A bejelentés egy többéves átalakítási időszak végét jelzi, amelynek során végrehajtották a Virgo detektor érzékenységének növeléséhez szükséges technikai fejlesztéseket.
A több kilométer karhosszúságú lézer-interferometrikus gravitációshullám-detektorok, a két amerikai LIGO és az európai Virgo a 2000-es évek elején kezdték meg működésüket. A Virgo Olaszországban, Pisa mellett, Cascinában épült két egymásra merőleges, 3 km hosszúságú vákuumkarral.
Ezeknek az első generációs obszervatóriumoknak az érzékenysége nem volt elegendő a gravitációs hullámok közvetlen megfigyelésére, ezért a többéves mérési időszakot követően a tudományos közösség a detektorok felújításáról döntött.
2010 őszén az amerikai, majd 2011 tavaszán az európai detektorban is megkezdték az érzékenység növeléséhez szükséges technikai fejlesztéseket. Az átalakítás több évet vett igénybe, de a várakozások meghozták a várt eredményt: a felfejlesztett LIGO detektorok 2015. őszi újraindulásuk után sikeresen észlelték két összeolvadó fekete lyuk gravitációs hullámait.
A több mint 1 milliárd fényév távolságból indult hullámjel a Földön az atommag átmérőjének ezredrészével azonos nagyságrendű távolságváltozásokat okozott, amit az érzékeny detektorok rögzítettek. Ezzel – 100 évvel Einstein eredeti jóslata után – közvetlen megfigyeléssel is sikerült igazolni a gravitációs hullámok létezését.
A Virgo újraindulása valamivel több időt vett igénybe, a fejlesztések befejezésére 2017 elejéig kellett várni. Február végére megtörtént az összes fontos összetevő cseréje, és mostanra a lézerfény rezonáns állapotban fut mindkét detektorkarban. A fejlesztések befejezése egyben egy következő aktív időszak, a detektor üzembe helyezésének kezdetét is jelenti, amelynek során az egyes elemek finomhangolásával, a zajforrások kiszűrésével a detektor eléri a fejlesztett érzékenységet.
Ebben az időszakban nincsenek tervezett tudományos mérések, de előfordulhat, hogy az érzékenység növekedésével hasznos adatokat rögzíthet a detektor. Hogy ez a folyamat mennyi időt vesz még igénybe, nehéz megjósolni, a fejlesztő kutatók és mérnökök is visszafogottan nyilatkoznak az előre nem látható nehézségek miatt.
A tervek szerint néhány hónap elteltével a Virgo is megkezdi a gravitációs hullámok utáni vadászatot a LIGO detektorokkal közösen.
A Virgo együttműködést 6 európai ország, köztük Magyarország kutatói alkotják.
Az MTA Wigner Fizikai Kutatóközpont (korábban MTA KFKI RMKI) 2008-ban csatlakozott az együttműködéshez.
A Wigner Virgo-csoportjának tagjai részt vesznek az adatelemzéshez használt számítástechnikai eljárások, algoritmusok fejlesztésében, főként a grafikus processzorok, GPU-k alkalmazásában, továbbá a mért adatok kiértékelésében, az összeolvadó, nagy tömegű csillagok jeleinek keresésében, amihez a kutatóközpont GPU-laborja és a Wigner Adatközpontban üzemeltetett Wigner felhő is rendelkezésre áll. A Virgo újraindulásának bejelentésén a Wigner Fizikai Kutatóközpont kutatói, Lévai Péter főigazgató és Vasúth Mátyás, a magyar Virgo-csoport vezetője képviselték Magyarországot.
A LIGO-Virgo tudományos együttműködés munkájában rész vesznek még hazánkból az Eötvös Loránd Tudományegyetemen Frei Zsolt, valamint a Szegedi Tudományegyetemen Gergely Árpád László vezetésével működő LIGO-csoportok is.
A gravitációs hullámok közvetlen észlelésével lehetőség nyílt az univerzum egy teljesen új módszerrel való megfigyelésére, a gravitációshullám-csillagászat megszületésére. A harmadik gravitációshullám-detektor, a Virgo üzembe állása a hullámforrások paramétereinek meghatározása mellett a forrás égi pozíciójának megállapítása miatt is nagyon fontos.
Három detektorral a lehetséges forrástartomány a jelenlegi több száz négyzetfok területről jelentősen, 20 négyzetfok alá csökkenthető.
2015-ben, még az első megfigyelési periódus előtt a LIGO-Virgo közösség együttműködési megállapodást kötött több csillagászati obszervatóriummal, hogy az észlelt gravitációshullám-jelek alapján, az égi pozíciók megosztásával utólagos elektromágneses megfigyelésekre is legyen lehetőség. Ilyen elektromágneses felfénylést azonban csak a forrás anyagában vagy az azt körülvevő anyagban lejátszódó nagyenergiás folyamatok során várnak a kutatók.
A fekete lyukak jelenlegi megfigyelése mellett további fontos lépés a neutroncsillagok összeolvadásának elemzése, amire a detektorok érzékenységének növelésével nyílik majd lehetőség. Ekkor az észlelt gravitációshullám-jel alapján a neutroncsillagok belső jellemzőire, az azokat alkotó anyag tulajdonságaira lehet majd következtetni, miáltal a nagy részecskegyorsítókban vizsgált nagyenergiás anyagi jellemzők a gravitációshullám-megfigyelésekkel is ellenőrizhetővé válnak.
(A cikk eredetije az MTA oldalán jelent meg.)