A magas hőmérséklet az egyik legfontosabb abiotikus stresszor, amely a világ számos részén korlátozhatja a növények fejlődését, ezáltal pedig jelentős gazdasági károkat is okozhat. Világviszonylatban a hőstressz átlagosan 15 százalékkal csökkenti a búza terméshozamát. A magas hőmérséklet hatással van a növények különböző fiziológiai, biokémiai és molekuláris szintű folyamataira is.
Ismert, hogy a mérsékelten magas hőmérsékletű előkezelés (hőakklimáció) védelmet biztosíthat a későbbi extrém magas hőmérsékleti stresszel szemben, mert ezáltal úgynevezett szerzett termotolerancia jön létre. Míg a hőstressz által okozott károsodási folyamatokat elég jól feltérképezték már a szakemberek, addig a hőakklimáció folyamata kevésbé ismert. Kialakulásában feltehetőleg számos molekuláris mechanizmus vesz részt.
A hőakklimáció molekuláris mechanizmusainak jobb megértése gyakorlati szempontból is fontos, hiszen ezek az eredmények hozzájárulhatnak a hőtűrőbb genotípusok előállításához is.
Az ATK Mezőgazdasági Intézet Növényélettani Osztályának kutatói a vizsgálatok során igazolták, hogy egyes toleráns genotípusok az akklimatizációs hőmérsékleten képesek fokozni a párologtatást, miközben nem csökken a nettó széndioxid-asszimiláció mértéke. Azt is sikerült bizonyítaniuk, hogy extrém magas hőmérsékleten a toleráns genotípusok gyorsabb sztómazárásra képesek, mint a hőérzékenyek. A hőakklimatizáció számos védelmi mechanizmust is érint, ilyen például az antioxidáns enzimek indukciója. A poliaminok hatásmechanizmusa a szerzett hőtolerancia kialakításában azonban még kérdéses.
A legújabb eredmények alapján feltételezhető, hogy a mennyiségi növekedés mellett – vagy helyett – inkább a poliaminciklushoz kötődő jelátviteli folyamatok lehetnek fontosak.
Mindezeken túl a kutatók feltérképezték az egyéb növekedésszabályzó anyagok, növényi hormonok mennyiségi alakulását a hőedzés során. Egyes növekedésszabályozók (szalicilsav, auxin, abszcizinsav), és ezek rokon vegyületeinek (para-hidroxi-benzoesav, fazénsav és dihidro-fazénsav) mennyiségi alakulása jelentősen különbözött a vizsgált genotípusokban.
A különféle stresszfüggő paraméterek eredményei arra utalnak, hogy az emelt hőmérsékletekre adott válaszok egyes hasonlóságai mellett különböző stratégiák is működnek a magas hőmérséklet káros hatásainak csökkentésére.
Az őszi és tavaszi árpafajtákon végzett részletes metabolomikai analízis továbbá lényeges különbségeket mutatott mind a fajok, mind a fajták között. A kutatók számos vegyületet – köztük cukrokat, szerves savakat, aminosavakat és cukoralkoholokat – tudtak elkülöníteni és kimutatni. Bizonyos speciális útvonalak, például a raffinóz-családba tartozó oligoszacharidok indukciója, illetve a galaktinol szintézise feltehetően szintén hozzájárulhat a gabonafélék fokozott hőtűréséhez.
A kutatók a jövőben további kérdésekre keresik a választ: szeretnék feltárni többek között azt, hogy maga az emelt hőmérsékletnek való kitettség is stressz lehet-e, különösen fiatal korban. A hőkezelés stresszokozó hatásainak változását is tervezik kutatni az idő és más környezeti tényezők – például fény – függvényében. Mivel az egész növény és az egyes szervek adaptálódása eltérő lehet, szükség van például a gyökér és a bokrosodási csomó szerepének részletes vizsgálatára is. A stresszválasz a fejlődési fázistól is függ, ezért további kutatásra van szükség annak megállapításához is, hogy a hőedzési folyamatok és a genotípusok közötti különbségek megnyilvánulnak-e a felnőtt növényekben is.
A kutatás az Európai Unió és a Magyar Kormány támogatásával megvalósult projekt keretében történt. A kutatásokhoz jelentős segítséget nyújtott a szintén állami támogatással létrehozott, az ATK-nál nemrég üzembe helyezett metabolomikai labor is, amelyről bővebben itt olvashatnak.