Mesterséges intelligencia segítségével kutatják a csillag- és bolygókeletkezés folyamatát magyar kutatók

csillagkeletkezés
Vágólapra másolva!
Egy új nemzetközi kutatási programban az ELKH Csillagászati és Földtudományi Kutatóközpont (CSFK) munkatársai a Bécsi Egyetem és a Genfi Egyetem kutatóival közösen, a mesterséges intelligencia felhasználásával tesznek kísérletet arra, hogy újraértelmezzék a fiatal csillagok osztályozását, valamint a csillag- és bolygófejlődés korai szakaszait.
Vágólapra másolva!

Az Európai Unió Horizon 2020 kutatási és innovációs keretprogramján keresztül támogatott NEMESIS (Novel Evolutionary Model for the Early Stars with Intelligent Systems - azaz a csillagfejlődés korai szakaszának újszerű modellezése intelligens rendszerekkel) elnevezésű projekt elsődleges célja, hogy létrehozza az eddig ismert fiatal csillagokat tartalmazó legnagyobb adatbázist.

Emellett a kutatók azt tervezik, hogy a mesterséges intelligencia felhasználásával olyan csillagkeletkezési modellt alkotnak, amely túlmutat a jelenleg használt elméleteken, és képes teljesebb magyarázatot adni a modern csillagászati eszközökkel megfigyelt jelenségekre

- olvasható az Eötvös Loránd Kutatási Hálózat (ELKH) szerdai közleményében.

Csillagkeletkezés illusztrációja Forrás: Nature

Az elmúlt évtizedekben a csillagászok számára is egyre több adat vált elérhetővé, és ez az adatmennyiség mára olyan nagy mértékűre nőtt, hogy hétköznapi módszerekkel már kezelhetetlen, így szükségessé vált a "big data", a "machine learning" és a "deep learning" módszerek alkalmazása a csillagászatban is - írják.

Az arcfelismerés esetében a különböző algoritmusok magát az arcot fordítják le a matematika nyelvére, azaz számokra, amik megadják például az arc bal és jobb széle közötti, valamint az állcsúcs és a fejtető közötti távolságot, illetve ezek arányát, a szemek távolságát a fültől.

"A csillagászatban használt minták is hasonlók a matematika nyelvén, azonban ezek a csillagok olyan mérhető jellemzőiből adódnak, mint például a különböző hullámhosszokon kibocsátott fényességük, ezek aránya, a bennük fellelhető kémiai elemek vagy a környezetük jellegzetességei.

- magyarázza a közleményben Marton Gábor, a CSFK Konkoly Thege Miklós Csillagászati Intézet tudományos munkatársa, a NEMESIS projekt hazai koordinátora.

Csillagkeletkezés a grafikus elképzelése szerint Forrás: NASA

A közleményben felidézik, hogy a csillagkeletkezés különböző szakaszainak rendszerszintű osztályozása csak az 1980-as években vált lehetővé, az első infravörös megfigyeléseknek és elméleti számításoknak köszönhetően.

Ma - több mint 25 évvel azután, hogy a fiatal csillagok besorolását először értelmezték egymással összefüggő fejlődési környezetben - már lényegesen több, újabb és jobb adat áll rendelkezésre. Emellett a kutatóknak jóval fejlettebb számítási eszközei és módszerei vannak, amelyek segítségével újraértékelhetik a kezdeti feltevéseket, és új szempontokat, feltételrendszereket határozhatnak meg.

A fiatal csillagok mindenre kiterjedő paramétereinek meghatározásában nagy segítséget nyújtott a csillagok sugárzásának hullámhossza alapján működő osztályozás, azonban nagy benne a bizonytalansági tényező a konkrét fejlődési időskálákat illetően. A kutatás során újraértelmezzük a jelenlegi klasszifikációs sémát és a jellegzetes, kiugró időskálákat.

Illusztráció az LkCa 15 rendszerről. A csillag és az anyagkorong közötti hézagban születő bolygókat detektáltak Forrás: NASA/JPL-Caltech

Felügyelt és felügyelet nélküli gépi tanulási módszerekkel fogjuk feldolgozni az elérhető adatokat annak érdekében, hogy választ tudjunk adni a csillag- és bolygókeletkezés legaktuálisabb kérdéseire" - számol be a projektről Odysseas Dionatos, a Bécsi Egyetem kutatója, a konzorcium koordinátora.

Az egyik oka, hogy most vált aktuálissá a kutatás, hogy sokáig hiányzott a nagyskálájú optikai-infravörös égboltfelmérés.

"Az elmúlt évtizedben ez megváltozott, az olyan teljes égboltfelméréseknek köszönhetően, mint amilyen a Gaia, a 2MASS vagy a WISE projekt. A különböző fejlődési időskálák leírásához populációs statisztikákra van szükség, amihez elengedhetetlen fontosságú a nagy elemszámú minta. A Gaia űrtávcső az eddigi működése során 1,8 milliárd objektumot detektált, amelyek között nagy számban fordulhatnak elő fiatal csillagjelöltek" - magyarázza Marc Audard, a Genfi Egyetem munkatársa.

A NEMESIS projekt 2021 márciusában indult, és az elkövetkező 4 évre több mint 1,6 millió euró (közel 576 millió forint) összegű támogatást nyert el, melyből a hazai kutatásra 407 384 euró (csaknem 147 millió forint) fordítható.

Google News
A legfrissebb hírekért kövess minket az Origo Google News oldalán is!