A híres gyűrűs bolygó, a Szaturnusz legnagyobb holdját a Titant Chirstian Huygens holland csillagász és matematikus fedezte fel 1655. március 25-én. Ő volt az, aki elsőként felismerte a Szaturnusz gyűrűrendszerét is, megállapítva, hogy „a bolygó testét szabadon lebegő gyűrű veszi körül".
A Titan a Naprendszer második legnagyobb holdja a Jupiter körül keringő Ganymedes után, és amelynek 5 150 kilométeres átmérője nagyobb, mint a Merkúré. A Titan a maga nemében egyedülálló a Naprendszer holdjai között,
mivel ez az egyetlen olyan hold, amely számottevő, sűrű légkörrel rendelkezik.
A Titan légkörében a nitrogén a domináns gáz, ami az atmoszféra közel 95 százalékát alkotja. (A Föld légkörének 78 százaléka áll nitrogénből.)
A másik jóval kisebb, ám de annál fontosabb atmoszferikus összetevő a nagyjából 3 százalék légköri mennyiséget alkotó metán. A Titan atmoszférájának sűrűségét jól szemlélteti, hogy az mintegy másfélszerese a földi légkör sűrűségének, a vastagsága pedig hozzávetőleg 820 és 940 kilométer között mozog.
A Titan légkörét sűrű köd tölti ki, amely eltakarja a felszínről visszaverődő látható fényt.
Az atmoszféra átlátszatlansága miatt egészen a Cassini-Huygens űrszonda 2005 januárjában történt landolásáig szinte semmit sem tudtunk a Titan felszíni viszonyairól. Még ezt megelőzően, 2004. október 26-án az űrszonda mindössze 1200 kilométeres távolságra repült el a Titan felszíne felett, és ez alkalommal számos felvételt készített az óriásholdról. Ezek voltak az első olyan nagy felbontású felvételek, amelyek láttatni engedték a Titan felhőzete alatti felszíni formációkat.
Miután a Cassini-űrszonda 2017-ben a küldetését befejezve megsemmisült, nem sok lehetőség adódott a Szaturnusz legnagyobb és talán legkülönlegesebb holdjának a megfigyelésére. A W. M. Keck Obszervatórium, és a működését idén megkezdett James Webb űrteleszkóp összedolgozásának köszönhetően azonban most minden korábbinál szélesebb spektrumú képanyagot sikerült készíteni a Titan különleges légköréről, valamint a felszínét borító kiterjedt szénhidrogén-óceánokról, illetve folyamokról és tavakról.
November 5-én kora reggel futottak be a James Webb űrtávcső első felvételei a Guaranteed Time Observation (GTO) 1251-es bolygókutató csoportjához, ahol Conor Nixon vezető kutató irányításával azonnal elkezdték a felvételek kiértékelését.
„Évekig vártunk arra, hogy Webb infravörös látásmódjával tanulmányozzuk a Titan atmoszféráját, beleértve annak lenyűgöző időjárási mintáit és gázösszetételét, és átláthassunk a ködön, hogy tanulmányozhassuk az albedó jellemzőit (világos és sötét foltokat) a felszínen.
- A Titan atmoszférája hihetetlenül érdekes, nemcsak a metánfelhők és a viharok miatt, hanem azért is, amit el tud mondani a Titan múltjáról és jövőjéről – beleértve azt is, hogy mindig volt-e légköre. Teljesen elégedettek voltunk az első eredményekkel" – kommentálta a felvételek jelentőségét Conor Nixon.
A Webb Near-Infrared Camera (NIRCam) által rögzített különböző képek összehasonlításával hamarosan sikerült megerősíteni,
hogy a Titan északi féltekéjén látható fényes folt valójában egy nagy felhő.
Nem sokkal később egy második felhőt is felfedeztek. A felhők észlelése azért izgalmas, mert igazolja azt a számítógépes modellekből származó és a Titan éghajlatára vonatkozó, régóta fennálló előrejelzéseket, miszerint a felhők könnyen kialakulhatnak a középső északi féltekén a késő nyári időszakban, amikor a felszínt erősebben felmelegíti a Nap.
A kutatók rájöttek, hogy fontos kideríteni, mozognak-e a felhők, vagy változtatják-e alakjukat, ami információkat tárhat fel a Titan légkörében zajló légáramlásokról. Ezért gyorsan megkeresték a kollégáikat, hogy aznap este a hawaii Keck Obszervatórium segítségével nyomon követési megfigyeléseket végezzenek.
A James Webb Titan csapatának vezetője, Conor Nixon a NASA Goddard Űrrepülési Központjából írt Imke de Paternek a Berkeley-i Kaliforniai Egyetemre, és Katherine de Kleernek, a Caltech kutatójának, akik nagy tapasztalattal rendelkeznek a Keck-teleszkóp használatában.
Az volt a cél, hogy megpróbálják azonosítani a James Webb űrtávcsővel lefotózott atmoszferikus képződményt.
" Aggódtunk, hogy eltűnnek a felhők, amikor két nappal később a Keck-teleszkóppal a Titanra néztünk, de örömünkre ugyanazokon a helyeken voltak a felhők, csak mintha megváltoztatták volna az alakjukat" - nyilatkozta a sikeres földi megfigyelésről Imke de Pater, a kutatócsoport tagja. A csoport spektrumokat is gyűjtött a James Webb közeli infravörös spektrográfjával (NIRSpec), amely számos olyan hullámhosszhoz biztosít hozzáférést, amelyeket a Föld légköre blokkol az olyan földi teleszkópok előtt, mint amilyen a Keck Obszervatórium távcsöve is.
„Ezek az adatok, amelyeket még elemezünk, lehetővé teszik számunkra, hogy valóban megvizsgáljuk a Titan alsó légkörének és felszínének összetételét oly módon, ahogyan azt még a Cassini űrszonda sem tudta volna, és többet megtudhassunk arról, hogy például mi okozza a déli pólus felett látható fényes jelenséget " -nyilatkozta a csoport vezető kutatója.
Az elkészített felvételek új dimenzióból mutatják meg a Titan legkülönlegesebb alakzatait, a nagyobbrészt folyékony metánból, kisebb részt pedig etánból álló tengereket és tavakat. A NASA még 2008-ban jelentette be, hogy szénhidrogéntavak nyomára bukkant a Titanon. Ez volt a Földön kívül az első olyan égitest a Naprendszerben, amelynek felszínén cseppfolyós halmazállapotú anyagot találtak szignifikáns mennyiségben.
A Cassini űrszonda felvételeinek segítségével először az Ontario Lacus (Ontario-tó) alakzatról sikerült megállapítani a bizonyosság szintjén, hogy egy kiterjedt, 20 ezer négyzetkilométer felületű tó, amely a hold déli pólusának közelében fekszik. A James Webb űrtávcső friss felvételei teljes képet nyújtanak a Titan túlvilági szénhidrogén óceánjairól és tavairól. A korábbi, és a most készült felvételek részletes kielemzése különösen bizarr világ képét mutatják.
A legnagyobb kiterjedésű egybefüggő metánóceán a Kraken Mare, amelynek mérete a Kaszpi-tengerével vetekszik. A Titan északi pólusán fekvő metánóceánba egy 400 kilométer hosszú folyó ömlik. A tengereken és tavakon kívül számos kifejezetten nagy hozamú szénhidrogén folyamot is sikerült azonosítani a Titan felszínén.
Ezek közül a legnagyobbak hossza meghaladja az ezer kilométert,
a szélességük helyenként pedig eléri a 3-5 kilométert is. A radarmérések szerint a Ligeia Mare nevet viselő tenger átlagmélysége mintegy 170 méter, de ezen kívül a kisebb tavak között is számos olyan akad, amelyeknek meghaladja a tíz métert a mélységük, és ezért nem lehet „lelátni" az aljzatukra.
Azt is sikerült kimutatni, hogy a tavak „vízszintje" az évszakoknak megfelelően változik, a nagyobb kiterjedésű tengerekben pedig ugyanúgy megfigyelhető a parti öv, mint a földi vízből álló tengereknél. A tavak szintjének periodikus változása
fontos lehet a potenciális élet lehetőségének szempontjából is,
a part menti területek váltakozó körülményei ugyanis kedvező feltételeket teremtenek az élet építőköveit alkotó bonyolult kémiai rendszerek, szerves molekulák kialakulásához.
A mérések azt is kimutatták, hogy a Titan egyes tengerei nagyobb mennyiségű etánból állnak, a metánban és etánban gazdag folyadékok keveredése miatt pedig rendszeresen nagyobb mennyiségű nitrogén oldódik ki a légkörbe.
De ilyen nitrogén-kiválás történik a nyári időszakban is, amikor a Titan metántengerei kissé melegebbé válnak. A kutatók azt feltételezik, hogy az alapvetően jégből és szilárd kőzetekből felépülő hold belseje akár forró is lehet.
A NASA 2027-ben új missziót küld a Titanra. A Dragonfly (Szitakötő) misszió során egy többrotoros leszállóegységet küldenek a hold felszínére, ami azt fogja kutatni, hogy a Titan a maga sajátosan furcsa kémiájával lakható-e valamilyen létforma számára.