Vágólapra másolva!
Vágólapra másolva!

Alagúteffektus

Forrás: ORIGO
9. ábra



A határozatlansági elv

Forrás: ORIGO
10. ábra



A kétréses kísérletre a határozatlansági reláció a következőt jelenti. A nyitott rések mögé helyezett detektorokkal azt ugyan meg tudjuk állapítani, hogy az elektron 50-50% valószínűséggel vagy az A, vagy a B résen megy át (azaz nem feleződik), de ezzel megakadályozzuk az interferencia kialakulását, hiszen a detektor elnyeli az elektront. Az elektron helyét úgy kell meghatározni, hogy minél kevésbé zavarjuk terjedését, például gyenge fénnyel világítjuk meg. Ha azonban a fény nagyon gyenge, a fényrészecskék ritkábban érkeznek, mint az elektronok, s nem látjuk mindegyiket. Az az elektron, amelyiket nem látunk, interferál (de nem tudjuk, hol ment át), amelyiket pedig eltalál egy foton, azt úgy megzavarja, hogy akár az ernyőt is elkerüli. Az elektron terjedésének megzavarását egyedül úgy csökkenthetjük, hogy kisebb energiájú fotonokat használunk, azaz alacsonyabb frekvenciájú fényt alkalmazunk. A kisebb frekvencia viszont nagyobb hullámhosszat jelent, s mivel a fénnyel a hullámhossznál pontosabban nem lehet pozíciót megállapítani, a fotonok energiájának csökkentésével nő a helymeghatározás hibája. A méréssel történő zavarást tehát elkerülhetjük, de csak annak árán, hogy már nem tudjuk megkülönböztetni az A és a B rés helyét. Összegezve tehát: vagy meg tudjuk mondani, hogy hol ment át az elektron, de nem látunk interferenciát, vagy látunk interferenciát, de nem tudjuk, hogy melyik résen haladt át az elektron.

A határozatlansági reláció Heisenberg által megadott matematikai alakja a sebesség és a pozíció egyidejű meghatározásának pontosságára ad egy korlátot. Ezt a bizonytalanságot hullámtulajdonságnak, azaz a "hullámként terjedés" következményének lehet tekinteni. A határozatlansági reláció korlátot jelent a "részecskeként haladás" szemléletre vonatkozóan: az elektron pályája nem adható meg tetszőleges pontossággal, hiszen a klasszikus "pálya"-fogalom feltételezi a sebesség és a pozíció egyidejű ismeretét.

Google News
A legfrissebb hírekért kövess minket az Origo Google News oldalán is!