Mi történik, ha két pozitív elektromos töltésű fémgömböt egymás közelébe helyezünk? Taszítani fogják egymást, hiszen az azonos előjelű töltések taszítják egymást. Igaz?
Nem egészen. John Leknernek, az új-zélandi Victoria Egyetem fizikaprofesszorának nemrégiben publikált eredménye mást mutat: eszerint a legtöbb esetben a két fémgömb vonzani fogja egymást!
Az alapvető fizikai intuicíónknak ellentmondó konklúzió a szakembereket is meglepte. "Nem volt ismert előttem ez a jelenség, de a cikket elolvasva hihetőnek tűnik" - kommentálta az eredményt a Nature Newsnak William Ducker, a Virgina Tech vegyészprofesszora, a molekuláris erők mérésének specialistája.
Oszd meg, és uralkodj!
Hogyan jöhet létre ez az elsőre bizarrnak tűnő jelenség? A jelenség kulcsa, hogy a gömbök anyaga fém, tehát jó elektromos vezetőképességűek. Ez annyit tesz, hogy a fém anyagában a töltések szabadon elmozdulhatnak, vagyis a golyók töltéseloszlása képes átrendeződni.
Amikor a két gömböt egymáshoz közelítjük, a gömbök felszínén ülő pozitív töltések valóban taszítani kezdik egymást. Ennek hatására a fémgolyók felszínén a töltéseloszlás megváltozik: az "A" gömb töltéseinek taszító ereje miatt a "B" gömb felületén a pozitív töltések "hátrálni" kezdenek, és az A-val átellenes oldalon gyűlnek össze; a B gömb A-hoz közeli, kiüresedett oldalán pedig negatív töltéstöbblet marad. E jól ismert jelenség neve: töltésmegosztás. A gömbök közel eső oldalain felhalmozódó ellentétes előjelű töltések azután már vonzó hatást fejtenek ki egymásra, s ez összességében vonzóerőt eredményezhet a gömbök között.
Minden attól függ, pontosan hogyan rendeződnek át a töltések, miközben a két golyót egymáshoz közelítjük. Lekner elméleti számítási azt mutatják, hogy a vonzóerő majdnem mindig győztesen kerül ki a vonzások és taszítások küzdelméből.
Vonzás és taszítás
Ha a gömbök elegendően távol vannak egymástól, felszínükön közel egyenletes töltéseloszlás alakul ki, s a két gömb taszítja egymást - mintha csak két kicsiny pozitív töltés lenne. Ez érthető. Ha azonban a golyókat közelíteni kezdjük egymáshoz, létrejön a töltésmegosztás: az egyik gömb pozitív töltései arrébb lökdösik a másik gömb pozitív töltéseit, a hátramaradt negatívokat pedig vonzani kezdik. Ha a gömbök elég közel vannak - szól Lekner eredménye -, a vonzó hatás válik dominánssá.
Ha két pozitív töltésű fémgömb elég közel kerül egymáshoz, vonzó kölcsönhatás lép fel közöttük, nem pedig taszító.
Van azonban egy érdekes kivétel. Ha a két golyó ugyanolyan méretű és töltésű, akkor - a szimmetria miatt - nem világos, melyik gömb fogja megosztani a másik töltéseit. És valóban, Lekner számítási szerint ilyenkor a taszító kölcsönhatás megmarad. Egyik golyó se tudja elcsábítani a másik negatív töltéseit.
A kísérlet dönt
Hogyan lehetséges, hogy erre a figyelemreméltó jelenségre eddig senki nem figyelt föl? "Nagyon is lehetséges, hogy észrevették" - mondja Lekner a Nature-nek, emlékeztetve egy ismert esetre: 1836-ban William Snow Harris angol tudós, aki elsőként tervezett villámhárítót hajóra, töltött fémlemezekkel kísérletezett. Amiről beszámolt, alátámasztja Lekner teóriáját: néha a taszítóerő teljes megszűnését és a vonzóerő megjelenését tapasztalta.
Lekner szerint modern eszközökkel viszonylag egyszerűen lehetne kísérletileg tesztelni eredményét. Azért merülnek fel nehézségek - teszi hozzá Ducker. A közönséges fémek véges ellenállása megakadályozza, hogy a töltéseloszlás szabadon átrendeződjön, tehát lehetséges, hogy egy szupravezetőben működne jól a kísérlet. Másrészt a berendezés igen finom szabályozhatóságára volna szükség: a gömbfelületeknek annyira simának kell lenniük, hogy a gömbök előbb érezhessék a vonzó kölcsönhatást - ez kis távolságnál valósul meg - mint hogy összeérnek; a fémgolyók töltésének igen precíz kontrollját kellene megvalósítani, és meggátolni az esetleges töltésáramlást kettejük között. Mindez persze nem lehetetlen. "Már gondolkozom a kísérlet részletein" - mondja végül Ducker.
Gömöri Márton