1996 februárjában az orosz Mir űrállomáson egy asztronauta arra készült, hogy oxigént keverjen az úgynevezett gyertya-típusú oxigén generátorral, amikor az váratlanul kigyulladt.
A lángok szinte azonnal felcsaptak,
és megolvadt fémdarabok repültek a levegőbe, befröcskölve a választófalat.
Mint a tűzijáték, úgy lövelltek szét a szikrák, az űrállomást pedig elborította a fojtogató füst, elhomályosítva a látást és akadályozva a légzést. Az űrállomás egyik asztronautája, az amerikai Dr. Jerry M. Linenger megragadott egy sürgősségi maszkot, de nem jött belőle oxigén.
Ezért egy másikkal kezdett próbálkozni, miközben azzal küzdött, hogy szabaddá tegye a tűzoltó készüléket, ami a választófalhoz volt erősítve. Linenger egy orosz űrhajós segítségével
a kiszabadított tűzoltó készülékkel megpróbálta eloltani a lángokat, de hiába.
Végül nagyjából 14 perccel később a tűz magától kialudt, mert elfogytak azok a tüzet tápláló égésgázok, amik a súlytalanságban szétterjedtek a kabintérben.
A végül szerencsés kimenetelű baleset hatására elkezdtek sokkal komolyabban foglalkozni a súlytalanság viszonyai között keletkezett tűz problémájával.
Sürgős megoldást kellett találni, ezért a szakemberek lázas munkába fogtak.
Az asztronautika történetében már történt egy rendkívül súlyos tűzeset 1967-ben, igaz, nem a világűrben, hanem még a földi indítóálláson.
1967. január 24-én az Apolló-program első egysége, az Apolló-1 fedélzetén indítási próbát végeztek. Az Apolló-1 kabinját a súlymegtakarítás kedvéért 35 kilopascal nyomású tiszta oxigénnel töltötték fel. A háromfős személyzet parancsnoka, Virgil Grissom ülése mellett rövidzárlat keletkezett,
és a szikra belobbantotta a rendkívül gyúlékony oxigént.
A másodpercek alatt kialakult tűzviharban mindhárom asztronauta életét vesztette. Az Apolló-1 tragédiája után ezért minden egység kabinjában nitrogén-oxigén összetételű levegőkeveréket alkalmaztak a startig.
Az Apolló-1 tragikus tűzesete után bevezetett biztonsági intézkedések hatására sok szakértő úgy vélte, hogy az űrutazás meglehetősen biztonságossá vált, azzal érvelve, a tűz a súlytalanság viszonyai között már nem jelenthet fenyegetést.
A Mir űrállomáson történt tűzeset azonban bebizonyította, hogy tévedtek.
A probléma szemléltetésére a legjobb példa a gyertya égése. A kanóc közelében a levegő felmelegszik, csökken a sűrűsége, emiatt felemelkedik a környező hidegebb levegő fölé - ez az úgynevezett konvekció - és helyére friss levegő áramlik, folyamatosan ellátva a kanócot az égéshez szükséges oxigénnel.
A keletkező égési gázok, égéstermékek, mint például a szén-dioxid ily módon eltávoznak az égés pontjától, ezáltal az égés sebessége lelassul. A forró égési gázok azért távoznak, mert kisebb a sűrűségük mint a környező hidegebb levegőé, így a meleg égési gázok helyére a hideg levegő áramlik.
Sokáig úgy hitték, hogy mivel a súlytalansági állapotban nincs légáramlat, a kanóc közelében az égési gázok összesűrűsödnek, és ezért hamar kialszik a láng.
Ez azonban nincs így.
A kísérletek ugyanis azt mutatják, hogy a tűz egészen jól ég a súlytalanságban is,
csak éppen másként.
Az űrkorszak első tűzkísérletét egy erre a célra létesített toronyban végezték el, szárazföldi körülmények között. A toronyban zárt peron zuhant alá szabadesésben,
amelyben így rövid időre létrejött a súlytalanság állapota.
A teszteket 1975-ben áthelyezték a világűrbe, az amerikai Skylab űrállomás fedélzetére, ahol egy speciális fülkében gyújtottak tüzet.
Itt kiderült, hogy a lángok a légáram híján diffúzióval terjednek, és gyakran gömbformát vesznek fel.
A diffúzió a konvekciónál kevésbé hatékony módja a gázok keveredésének, ezért a lángok hűvösebben, tisztábban és hosszabban égnek. A koromhiány gyakran kékké, a légáramlat hiánya pedig tartóssá teszi az égést. A mikrogravitációs környezetben (amit a köznyelvben súlytalanságnak nevezünk) a gyertyaláng majdnem láthatatlan, halványkék színű. (A Mir kamerája ki sem tudta mutatni.)
A láng hőmérséklete túl alacsony ahhoz, hogy sárga színű legyen, mint a Földön.
Mivel nincs légáramlat, a lassúbb gázcsere a diffúzióból korom és füst nélküli lángot produkál.
A koromtermelés csak akkor indul meg, ha az égés megáll a láng csúcsán. A korom és a füst keletkezése az üzemanyag-áramlás sebességétől függ.
1996-ban Dr. Shannon W. Lucid, a NASA szakértője, amerikai űrhajós azt vizsgálta, milyen hosszú ideig ég a láng a súlytalanság állapotában.
A teszteket olyan születésnapi gyertyákkal végezte el, amelyek a Földön 5-10 percig égnek.
A Földön 5-10 percig égő születésnapi gyertyák az űrben kereken 45 percig égnek. Amikor Dr. Lucid a kísérlet után felkapcsolta a világítást, meglepő dolgot tapasztalt: egy fehér, a lángnál 2-3-szor nagyobb gömbfelhő lebegett a láng helyén.
A forró gyertyaviasz és a kanóc elpárolgott és köddé sűrűsödött.
A nem várt felfedezés nagyon fontos biztonsági szempontból: az űrkutatóknak ugyanis azzal kell számolniuk, hogy az éghető anyag a tűz megszűnése után is jól párologhat.
A NASA célja nem csak a tűzbiztonság volt a kísérletekkel, hanem az égés folyamatának kutatatása is, ami sokkal könnyebben tanulmányozható a súlytalanság viszonyai, mint a földi turbulens légáramlatok körülményei között.
A kísérletek során egy alkalommal az űrsikló személyzet a forró vezetékek tűzveszélyességét is tanulmányozta,
az űreszközök ugyanis tele vannak műanyag burkolatú vezetékekkel.
A Földön, normál gravitációs körülmények között a forró levegő felemelkedik, a vezeték pedig lehűl, így nem forrósodik túl.
A súlytalanságban azonban ez sem így történik.
A tesztek szerint a műanyag, a vezetékek burkolata jól ég, de csak amikor dolgozik a ventillátor, ami oxigénnel táplálja a lángokat.
(Konvekció hiányában ventillátorral hűtik az űrjármű vezetékeit.) A kutatás vezetője Dr. Ross, a NASA Lewis Research Center clevelandi kutatóközpontjának tagja azt mondta, hogy a kapcsolódó kísérleti eredményekre figyelemmel ezért vészhelyzetben le kell kapcsolni a ventillátorokat.
Ezt a fontos biztonsági ajánlást elfogadták, amit a Nemzetközi Űrállomáson már alkalmaznak is.